摘要

【目的】研究面向开放网络社区话题交互数据的对抗性观点挖掘方法。【方法】构建基于情感分析和主题模型的观点情感对抗性挖掘模型。通过该模型,考虑知乎社区、话题、交互数据等特征,加入交互数据筛选和关键词筛选,以知乎AlphaGo话题为例进行实证研究。【结果】本文方法可有效挖掘观点及其情感对抗性。研究发现在AlphaGo话题讨论中,"挺AlphaGo"和"反AlphaGo"的对抗性显著。"挺AlphaGo"的主要表现有人类智慧、比赛、能力,"反AlphaGo"的主要表现有AI产品及其产品、理解能力。【局限】仅针对AlphaGo主题进行实证分析,在模型泛化性验证上有待提高。【结论】本文方法具有可操作性和可解释性,可挖掘交互数据潜在的对抗性信息,从而使观点挖掘的结果更具针对性,为情报分析、观点挖掘提供借鉴。