摘要
针对快速集成经验模态分解(FEEMD)和固有模态函数(IMF)选择方法的缺陷,提出一种基于快速互补总体经验模态分解(FCEEMD)复合筛选的故障特征提取方法。首先,引入符号相反的成对的白噪声来中和FEEMD中的残余噪声,抑制IMF之间的模态混叠并得到一系列新的IMF;然后,基于能量及相关系数构建复合筛选模型并根据筛选得到的有效IMF构建重构信号;最后,通过希尔伯特(Hilbert)包络解调提取重构信号中包含的周期性脉冲特征来诊断轴承故障。凯斯西储大学(CWRU)轴承数据集上的实验结果表明,该方法能高效、准确地提取出轴承故障特征,在旋转机械故障诊断中有借鉴意义和应用前景。
- 单位