摘要
为了实现对植物叶片图像的快速识别,以植物叶片分段面积比作为叶片的关键特征,构建植物叶片形态特征模型。先将植物叶片图像进行二值化、腐蚀、膨胀等常规化预处理,找到叶片图像最小外接矩形;然后对处理后的叶片图像进行面积等分分段处理,计算各段叶片面积与该段矩形面积的比值,形成叶片特征数据样本集。在此基础上,分别使用三层神经网络算法和多元线性回归算法,对18种植物叶片的特征数据集进行了识别实验。结果表明,运用这种方法进行植物叶片图像识别,运算简单,识别率高,易于实现;神经网络算法的识别效果明显优于多元线性回归算法。
- 单位