摘要
为缓解指针式仪表检测精度对样本数量的严重依赖,有效提升少样本情况下指针式仪表的检测精度,提出了基于人工-真实样本度量学习的指针式仪表检测方法。通过对指针式仪表结构进行统计分析,提取其显著特征进行建模,用以生成所需要的人工基准样本,弥补真实场景下指针式仪表数据缺乏的问题;结合度量学习的特性,以Faster R-CNN为基线模型,引入特征相似性度量模块,从低维特征向量空间降低或消除人工基准样本和真实样本之间的分布差异,并加强特征提取网络对指针式仪表显著特征的学习。实验证明,较基线模型,基于人工-真实样本度量学习的指针式仪表检测方法AP75提升了22.14%,有效提高了少样本情况下指针式仪表检测的精度。
- 单位