提出一种改进的YOLOv5m目标检测算法,解决无人机在复杂环境下对小目标特征提取不足导致的检测精度低的问题.在CBAM的基础上提出一种通道——空间(CAM-SAM)注意力机制,通过改变通道和空间的连接结构,对不同尺寸的特征图进行注意力权重分配,在特征融合中采用跳跃式连接方法,进行不同尺度的特征融合;在预测网络中使用高斯加权的Soft-NMS替换原NMS非极大值抑制.实验结果表明,改进的YOLOv5m模型mAP值为42.1%,比原YOLOv5m提高了5.8%.