摘要
将知识融入机器学习模型是提升算法可解释性与计算性能的重要途径之一。针对电力系统运行的稳定分析问题,提出一种新的物理内嵌式机器学习框架与方法,将描述故障动态过程的微分-代数方程作为先验知识,引导神经网络模型训练。相比于完全依赖数据的通用机器学习方法,物理内嵌式机器学习直接模拟物理过程,通过数据背后所蕴含的物理方程来约束机器学习决策空间,并输出故障后的动态曲线,结果物理含义与可解释性更强。同时,物理内嵌模式也大幅降低了模型训练对海量数据的依赖,为小样本学习及以及模型向真实系统迁移应用过程中的参数辨识提供一种新的思路。
-
单位中国电力科学研究院有限公司