为解决模拟加载系统油压信号的识别问题,提出了一种基于核主元分析(KPCA)特征提取和BP神经网络(BPNN)相结合的模式识别方法。该方法首先采用KPCA对原始样本数据进行特征提取,然后采用BPNN构造模式分类器,对工作装置6种不同工作状态信号进行识别。实验结果验证了该方法的有效性,为同类液压系统的信号特征分析及模式识别提供了参考。