摘要
图像去雾作为图像增强的基本问题得到了广泛关注,已成为具有挑战性的研究方向。针对目前图像去雾算法中先验方法与深度学习方法存在的颜色失真以及雾霾残留问题,提出了一种基于注意力机制的细节恢复的图像去雾算法。首先,引入改进CBAM模块,设计出注意力基本块并将基本块封装成组块;其次,为加强组块内信息交互能力,组块间引入了密集连接残差块;最后,设计细节恢复模块对去雾图像进行细节恢复,以进一步减轻雾霾残留的影响。数值仿真实验表明:在RESIDE数据集上,所提算法与主流去雾算法相比取得了较高的峰值信噪比和结构相似度,同时在真实图像上也得到了更好的视觉效果。
- 单位