摘要
提出一种基于小波时频图和卷积神经网络(CNN)的滚动轴承智能故障诊断方法。对滚动轴承的振动信号进行连续小波变换(CWT),得到时频图,并以灰度图的形式显示,再将时频图压缩至适当的大小;将压缩后的时频图作为特征图输入,建立CNN分类器模型,以实现滚动轴承的智能故障诊断。基于人工轴承故障数据集进行了实验研究,同时从结构参数和训练参数两方面对网络的性能进行了优化改进。结果表明,该方法能有效识别滚动轴承的故障类型,改进的CNN具有较强的泛化能力、特征提取和识别能力。
-
单位解放军理工大学野战工程学院