摘要

彝文古籍中字符的检测是古彝文字符识别的重要基础,检测的准确性直接影响着古彝文识别的精准程度。针对彝文古籍文献版面结构复杂、排版缺乏规范、存在图文混排等情况,提出一种基于最大极值稳定区域(MSER)和卷积神经网络(CNN)的彝文古籍文献字符检测方法。首先对彝文古籍扫描图片用非局部均值滤波进行了预处理,然后采用一种改进的局部自适应二值化方法得到二值图像,实现对图像的前景和背景的分割;再采用基于启发式规则的方法对非文本区域进行去除,从而得到文本区域;最后采用MSER和CNN相结合的方法对古籍中的单个字符进行检测。实验结果表明,该方法对古籍中文本和非文本区域进行了有效的分离,并在单字符检测实验中取得了较高的准确率和召回率,能有效地解决古籍文献字符识别中的字符检测问题。

  • 单位
    贵州工程应用技术学院