摘要
深度学习在一定程度上解决了从低分辨率图像中恢复出高分辨率图像这一图像超分辨率问题。目前基于生成对抗网络(generative adversarial network,GAN)的方法可以从超分辨率数据集中学习低/高分辨率图像映射关系,从而生成具有真实纹理细节的超分辨率图像。然而,基于GAN的图像超分辨率模型训练通常不稳定,其结果往往带有纹理扭曲和噪声等问题,提出了采用掩膜(mask)模块以辅助对抗网络训练。在网络训练过程中,掩膜模块根据生成网络输出的超分辨率结果和原始高分辨率图像,计算得到相应观感质量信息,并进一步辅助对抗网络训练。在实验中对3个最近提出的基于GAN的图像超分辨率模型进行修改,引入掩膜模块,修改后的模型在超分辨率图像输出的观感和真实感量化指标上均有明显地提升。掩膜模块的优点是可以进一步提升基于GAN的图像超分辨率网络输出的超分辨率图像观感质量,并仅需对生成对抗网络训练框架进行修改,因此适用于多数基于GAN的图像超分辨率模型的进一步优化。
-
单位上海科技大学; 中国科学院上海微系统与信息技术研究所; 中国科学院大学