针对基于RBPF的激光SLAM算法在重采样过程中出现的样本贫化和激光测量模型不准确的问题,提出一种优化的激光SLAM算法。为缓解重采样过程中的样本贫化问题,采用最小采样方差重采样方法改进原重采样方法,使重采样后的粒子保持多样性。结合似然域模型与意外对象观测概率,使激光测量模型更好地反映真实环境。实验结果表明,改进的重采样方法定位效果较好,相对原激光SLAM算法,改进的激光SLAM算法在动态环境中的建图和定位精度更高。