摘要

生产、装配、碰撞或磨损都会造成锚护机器人末端精度降低,负载工作导致机身变形也会影响末端精度,为降低锚护机器人锚钻误差,高精度完成井下打孔、对孔、支护任务,本文提出了一种由麻雀算法改进BP神经网络(SSA-BP算法)的误差补偿方法。首先,利用旋量法搭建误差模型,并采用虚拟样机验证误差模型的正确性;其次,搭建末端位姿误差预测模型,实现对误差的预测和补偿;最后,通过SSA-BP算法、BP算法和PSO-BP算法三种补偿法的对比仿真,证明了SSA-BP算法的补偿精度更高、稳定性更好。经过试验验证,锚护机器人末端误差可降至10 mm以下,精度提高了80%。由此可知,SSA-BP算法在锚护机器人误差补偿方面有着优秀的准确性、优越性和可行性,为矿山安全开采提供了高效保障。

  • 单位
    山西天地煤机装备有限公司; 中国煤炭科工集团太原研究院