摘要

[目的]由于船体结构的复杂性,传统优化方法容易出现陷入局部最优、求解速度偏慢的问题。[方法]基于自适应变异粒子群算法(AMPSO)、BP神经网络、遗传算法(GA),结合Isight/Nastran设计的正交试验方法,提出AMPSO-BP-GA结构优化方法,然后分别以十杆桁架和跳板结构的优化作为算例,验证所提优化算法的准确性和可行性。[结果]计算结果表明:在相同的约束条件下,经AMPSO-BP-GA方法优化后,十杆桁架结构重量为2 272.1 kg,比其他方法优化后的结构重量更轻;跳板重量减少了33.3%,对比GA-BP-GA方法和PSOBP-GA方法分别减少25.4%和17.9%,显示AMPSO-BP-GA方法的优化效果更佳。[结论]AMPSO-BP-GA方法针对结构轻量化的优化效果更佳,可为船舶结构优化设计提供参考。

全文