摘要

语音转换是计算机听觉领域的热点问题之一,将歌声运用于语音转换是一种新的研究方向,同时拓宽了语音转换的应用范围。经典的高斯混合模型的方法在少量训练数据时会出现过拟合的现象,而且在转换时并未有效利用音乐信息。为此提出一种歌唱声音转换方法以实现少量训练数据时的音色转换,并且利用歌曲的基频信息提高转换歌声的声音质量。该方法使用核聚类和偏最小二乘回归进行训练得到转换函数,采用梅尔对数频谱近似(MLSA)滤波器对源歌唱声音的波形直接进行滤波来获得转换后的歌唱声音,以此提高转换歌声的声音质量。实验结果表明,在少量训练数据时,该方法在相似度和音质方面都有更好的效果,说明在少量训练数据时该方法优于传统的高斯混合模型的方法。

  • 单位
    中国科学院,合肥智能机械研究所; 中国科学院合肥智能机械研究所; 中国科学技术大学