两方零和马尔科夫博弈下的策略梯度算法

作者:李永强*; 周键; 冯宇; 冯远静
来源:模式识别与人工智能, 2023, 36(01): 81-91.
DOI:10.16451/j.cnki.issn1003-6059.202301007

摘要

在两方零和马尔科夫博弈中,由于玩家策略会受到另一个玩家策略的影响,传统的策略梯度定理只适用于交替训练两个玩家的策略.为了实现同时训练两个玩家的策略,文中给出两方零和马尔科夫博弈下的策略梯度定理.然后,基于该策略梯度定理,提出基于额外梯度的REINFORCE算法,可使玩家的联合策略收敛到近似纳什均衡.文中从多个维度分析算法的优越性.首先,在同时移动博弈游戏上的对比实验表明,文中算法的收敛性和收敛速度较优.其次,分析文中算法得到的联合策略的特点,并验证这些联合策略达到近似纳什均衡.最后,在不同难度等级的同时移动博弈游戏上的对比实验表明,文中算法在更大的难度等级下仍能保持不错的收敛速度.

全文