摘要
为了获得更加可靠的相似矩阵,并使其含有精确的连通分支数量,提出了一种新的稀疏子空间聚类算法。该算法利用K近邻思想从局部寻找可靠邻居,在距离度量方面,选用测地线距离进行计算,考虑了数据在高维空间分布的几何结构,使得数据的邻居关系更加合理。同时,利用Ky Fan定理,通过参数的自适应调节,使得相似矩阵包含精确的连通分支数量。此外,该算法打破了常规的两步走模式,同时进行相似矩阵的学习和谱聚类过程,将数据相似性度和分割进行了紧密的联系,进一步加强了对数据结构信息的挖掘和利用。在人造数据集、图像数据集以及真实数据集进行了实验,实验结果表明该算法是有效的。
- 单位