摘要
针对极化合成孔径雷达(PolSAR)影像在土地覆盖分类中存在特征利用不充分导致分类精度低的问题,该文提出一种联合ReliefF和相关性的特征选择(CFS)算法的分类方法。首先利用ReliefF算法对极化特征进行特征重要性排序,淘汰无关特征,然后利用CFS算法进行特征优选,最后结合分类回归树(CART)决策树构建分类模型,完成土地覆盖分类。以高分三号(GF-3)两个场景的影像数据进行实验,结果表明,该方法能够有效剔除冗余特征,显著提高分类准确率,适用于PolSAR影像土地覆盖分类。
- 单位