摘要
快速、准确、无损估测马尾松林叶面积指数对精准林业管理具有重要意义。以小型低空无人机为平台,搭载RedEdge多光谱传感器,获取福建省西部马尾松林多光谱影像,运用重采样的方式获取并计算不同空间分辨率(0.08、0.1、0.2、0.5、1、2、5 m)下的植被指数,结合地面实测LAI数据,分析其与植被指数的相关性,进而采用线性模型(LR)、多元逐步回归模型(MSR)、随机森林模型(RF)、支持向量机模型(SVM)和人工神经网络模型(BP)构建不同空间分辨率下的马尾松林LAI估测模型以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)和总体精度(TA)来评价估测模型精度,从而确定最佳空间分辨率和最佳模型。结果表明,不同空间分辨率下LAI与植被指数均呈极显著相关(p <0.01);多变量模型(MSR、RF、SVM、BP)的调整R2平均值高于LR模型;随着空间分辨率的增加,不同模型的R2整体上呈先增大后减小的趋势;当空间分辨率为0.5 m时,利用植被指数建立的RF模型为马尾松林LAI的最佳估测模型,RF模型的调整R2为0.766,模型估测的R2、RMSE、RPD和TA分别为0.554、0.421、1.523和81.95%。本研究可为无人机多光谱遥感反演森林LAI表型参数的空间分辨率和模型选择提供理论参考。
-
单位福建工程学院; 福建农林大学