摘要

现有基于U型网络(U-Net)的咬翼片图像分割方法将咬翼片X射线图像分割成龋齿、牙釉质、牙本质、牙髓、牙冠、修复体和牙根管7个部分,但分割准确率偏低。为此,提出一种改进的咬翼片图像分割方法,将条件生成对抗网络与U-Net相结合对咬翼片进行分割,使判别器与生成器相互优化,获得具有更多上下文信息的分割特征图。实验结果表明,改进方法的Dice系数相比U-Net方法提升了0.133,分割准确率更高。

全文