摘要
针对用归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)估算植被叶面积指数(Leaf Area Index,LAI)不仅需要大量地面LAI观测及其数据统计,且在植被NDVI饱和时难以估算LAI等问题,提出了一种基于数据挖掘技术的LAI遥感估算方法。该方法借助数据挖掘技术从有限的数据中挖掘和发现有用的信息,排除人为干扰,提高模型构建效率和精度。文中以安徽滁州地区杨树林为研究对象,获取研究区杨树林展叶期和花果期的HJ-CDD遥感影像,利用LAI-2000同步测量杨树林LAI;借助数据挖掘技术并基于杨树林展叶期和花果期估算的LAI值,通过筛选优化构建了杨树林生长过程中叶面积稳定期的LAI估算模型,并结合叶面积稳定期实测的LAI值验证表明该模型用于杨树林叶面积稳定期LAI估算的可靠性,为植被NDVI饱和时的LAI遥感估算提供了一种有效的思路和方法。
-
单位南京大学; 浙江省水利水电勘测设计院