摘要

非法入侵严重影响船舶通信网络安全运行,船舶通信网络非法入侵行为具有很强的变异行为,导致当前船舶通信网络非法入侵行为的识别效果差。为了对各种船舶通信网络非法入侵行为进行准确性识别,提出深度学习算法的船舶通信网络非法入侵行为识别技术。该技术将船舶通信网络非法入侵行为识别看作是一个模式分类问题,将非法入侵行为划分多种类型,然后提取各种船舶通信网络非法入侵行为的变化特征,采用深度学习算法对变化特征和船舶通信网络非法入侵行为类型之间的联系进行分析,以区别各种船舶通信网络非法入侵行为,最后选择有代表性的船舶通信网络非法入侵行为进行了性能测试。结果表明,深度学习算法的船舶通信网络非法入侵行为识别率高于95%,非法入侵行为识别时间控制在2 s以内,可以满足现代船舶通信网络通信安全的需要。

  • 单位
    山西职业技术学院