摘要
推荐系统的目的是为了基于用户喜爱,为用户提供最高匹配度的潜在项目.但如果用户和项目提供者喜欢单一的热门项目,那么用户不能发现新颖性项目,会给用户和项目的提供商双方造成巨大损失.现有的新颖推荐工作主要集中在对由精度为基础的基础模型生成的前N个列表进行重新排序.结果,这些框架是两阶段的,并且结果基本上限于基础模型.另外,在训练基本模型时,通用的BRP损失函数以相同的方式对待所有对,始终抑制应该建议的有趣负项.针对BPR损失函数的局限性,在此提出了一种个性化的成对新颖性加权方法,该方法能够对1阶段的新推荐进行端到端的训练.该方法解决了损失函数中所有负项的一致抑制问题,并在损失函数中明确引入了用户个人偏好信息.充分利用了用户和项目的新颖性信息,并将其显式地集成到损失函数中,使模型能够区分感兴趣的未知项目和不喜欢的项目.有效地提高了具有边缘损失的新颖性.基础模型将在损失权重的指导下学习用户偏好,并在1阶段生成新的建议列表.综合实验表明,该方法在几乎不降低准确性的情况下有效地提高了新颖性.
- 单位