摘要

为减少水分、粒度对传统方式选取特征波长建立的土壤有机质预测模型的影响,本文提出新的特征波长提取方法。采集中国农业大学上庄实验站土壤样本60份,将样本自然风干后一分为二,一份配成5个粒度梯度(粒径2~2.5 mm、1.43~2 mm、1~1.43 mm、0.6~1 mm、0~0.6 mm),另一份过0.6 mm筛后配成5个水分梯度(含水率5%、10%、15%、20%、25%)。通过标准仪器分别获取土壤有机质含量真值和土壤光谱信息,使用随机蛙跳算法进行特征波长提取,每个水分、粒度梯度下分别选取7个与土壤有机质含量真值相关性较高的波长作为对应梯度下选取的特征波长,分别建立多元线性回归(MLR)、偏最小二乘(PLS)、随机森林(RF)模型,结果表明:随着含水率增高,3种模型的建模集和预测集决定系数R2基本呈减小趋势;在2~2.5 mm粒度梯度下,3种模型的建模集和预测集R2最低,在0~0.6 mm梯度下,建模集和预测集R2最高,其余梯度下,建模集和预测集R2接近。结合滤光片带通范围(±15 nm),挑选出水分梯度下相同或者接近的8个土壤有机质特征波长,粒度梯度下选取6个特征波长,最终结合化学键特性在水分梯度和粒度梯度下确定的14个特征波长下剔除了6个,确定8个特征波长:932、999、1 083、1 191、1 316、1 356、1 583、1 626 nm。分别建立MLR、PLS、RF模型,结果表明:最终选取的有机质特征波长建立的3种模型建模集R2均不低于0.8、预测集R2均不低于0.75,其中PLS预测效果最佳,建模集、预测集R2分别为0.880 9、0.840 2。本研究所确定的有机质特征波长建立的模型具有更好的适用性和预测效果,相比于传统方式,一定程度上消除水分、粒度对预测的影响。