摘要

在实际的工业过程中,由于滚动轴承故障数据的小样本或样本分布不平衡问题很常见,导致许多算法难以准确地识别不同故障。针对这一问题,提出了一种基于条件卷积生成对抗网络(CCGAN)和ResNet34的深度神经网络故障诊断方法。首先,采集了滚动轴承振动信号数据,并将振动信号转换为灰度图像,并增强了其数据特征;然后,采用CCGAN网络学习了原始小样本数据的特征,扩展了小样本不平衡数据集;最后,在滚动轴承振动信号的数据扩充和特征增强的基础上,采用ResNet34深度网络进行了一维振动信号的小样本不平衡故障诊断和分类。研究结果表明:随着小样本不平衡数据集逐步扩展到多维平衡数据集,该方法在不同数据集中故障诊断的准确性均得到了有效提高,在分类精度上达到了99.5%;诊断证明了其特征提取能力优于典型的机器学习和深度学习网络,从而验证了该方法在小样本不平衡故障诊断中的优势。