摘要
孔隙度是地层评价、储量研究中的重要参数,对于四川盆地C气田雷四上亚段气藏来说,由于矿物组分多样、密度曲线受扩径影响较大、开发井测井资料丰富程度不足等原因,导致使用体积物理模型方法求取孔隙度时,在开发井模型搭建、解释精度和效率等方面,都难以获得满意的结果.为更准确地计算孔隙度,在敏感测井响应分析基础上,尝试使用了SVR和AdaBoosting算法:SVR算法将低维度数据映射到高维空间,满足了把与孔隙度呈复杂非线性关系的电阻率曲线纳入至模型中的需要,和常规的多元、多项式回归相比,提升了模型准确度和稳定性;AdaBoosting算法采用了“集成学习”的思维,通过对简单模型进行迭代,将多个形式相同的简单模型提升为一个复杂的学习器,从而克服了使用单一模型算法灵活性差、精度低的缺点.使用上述方法进行孔隙度解释,并从误差和分布范围两个角度对模型进行了评价,认为相较于传统的体积物理模型,上述算法结果具有更高的精度、更强的稳定性,更能满足储层评价的需要.
-
单位中国石油化工股份有限公司西南油气分公司; 中心实验室; 中国石油化工股份有限公司西南油气分公司勘探开发研究院