摘要
图像检测、识别任务已经被应用在越来越多的生产生活场景中,基于卷积神经网络的方法凭借着精度高的特点被广泛应用.但是卷积神经网络存在着权重参数多、对算力要求高的问题,算力有限且型号多样的边缘计算设备使得这些应用在使用中受限.在跨平台上运行高性能代码,以及基于GPU的卷积神经网络优化愈发重要.针对卷积神经网络中的卷积规模和其他通用矩阵乘(general matrix multiplication, GEMM)方法的不足,根据分块规模、分支执行、访存和计算比例,提出了一种针对卷积神经网络规模优化的GEMM优化方法,将其应用于Winograd算法,并结合算子合并,实现对卷积进一步优化.同时基于遍历的自调优选择性能最优的卷积算子,结合离线编译、内存池、16 b量化、网络规模裁剪等方法,来提升卷积神经网络的性能.最后在AMD V1605B平台上进行实验验证算法的效果,通过和其他GEMM算法以及深度学习网络的性能进行对比,验证了该方法能够获得比GEMM算法和Winograd算法更好的加速效果,并能有效地加速卷积神经网络.
-
单位中国航空无线电电子研究所; 中国科学院计算技术研究所