摘要

晶体缺陷的研究在材料领域中十分重要,为此提出一种晶体异常图像检测方法。通过对晶体缺陷图像特点进行分析,以可选择卷积核网络(Selective Kernel Networks, SKNet)作为基础模型,同时对SKNet进行改进,以提高检测效果。一方面,为了避免通道权重信息的丢失,提高特征提取能力,采用高效通道注意力模块来替代SKNet中的压缩、激励模块;另一方面,为了提高对困难样本的分类效果,引入焦点损失替代交叉熵损失。实验结果表明:与参考算法相比,改进算法平均准确率提高了3.9%,异常图像精确率提高了1.5%,召回率提高了5.2%。