摘要
为了降低天气因素对光伏发电功率的输出值预测精度的影响,从聚类分析和信号分解两方面入手,提出了一种融合聚类算法(KDGMM),改进的变分模态分解(VMD)与随机配置网络(SCN)的预测模型。首先通过KDGMM聚类将气象数据划分成晴天、阴天和雨天,针对阴天难以准确预测的问题,采用灰色关联度分析(GRA)选择相似日,其次引入莱维飞行北方苍鹰优化算法(LNGO)优化VMD得到最优参数,从而降低阴天光伏功率的非平稳性。最后构建SCN预测模型对光伏功率数据进行预测,输出其预测结果。通过实验分析,所提方法的均方根误差(RMSE)和平均绝对百分比误差(MAPE)仅为1.44和1.3%,拟合优度指标R2高达0.99,与其他预测方法相比,本文所提方法有较高的预测精度。
- 单位