摘要
由于广彩瓷设计元素和图案种类繁多、复杂多样,准确识别现代及传统瓷器风格是广彩瓷传承工作中的巨大挑战。提出一种基于广彩瓷风格识别和图像合成模块的图案生成系统。在识别模块中,通过主成分分析和所提判别冗余量化策略对特征重要性进行分析和排序,然后分别训练两组神经网络,将最优设计特征与转换后的主成分特征关联,最后利用整体神经网络逻辑回归方法预测未知广彩瓷。基于条件生成对抗网络(c GAN)开发合成模块,要求用户提供自己设计的创意掩码或抽象瓷元素图像,以生成新的广彩瓷风格合成图像。在系统开发过程中,使用603幅广彩瓷图像测试分类模型。测试结果表明,所提模型在精确度、召回率、接受者操作特性曲线(ROC)的曲线下面积(AUC)和混淆矩阵等方面均优于其他方法。对用户设计的各种元素合成图像的案例研究表明,该系统有助于提高学习者对广彩瓷的欣赏和艺术创作能力。