摘要
为了进一步提升语法自动纠错技术的实用性,研究对以循环神经网络为核心的Sep2Sep模型进行优化改进,引入双向LSTM循环神经网络,将基于双向LSTM的Sep2Sep模型与MLP神经网络相结合构建语法自动纠错系统,并通过测试实验验证语法自动纠错系统的准确率。研究结果表明,研究所设计的语法自动纠错系统F0.5值为56.37,P值和R值分别为66.78和35.09,检测准确率较高。纠错系统的运行响应时间保持在1.34 s,能在多个检测目标并发情况下进行快速系统响应。研究利用双向LSTM和MLP神经网络解决传统纠错模型的梯度爆炸问题,并采用分布式架构提升自动纠错系统的运行能力,对进一步加强自动语法纠错技术的实用性具有重要意义。
-
单位西安建筑科技大学; 咸阳职业技术学院