提出了一种基于低通滤波-变分模态分解的风速信号预处理方法。该方法首先从能量的角度直接通过低通滤波筛选出信号的趋势成分,再利用VMD将剩余信号分解成一系列相对平稳的限带内禀模态函数。将该信号预处理方法与核极限学习机结合,建立了风速多步预测模型。为了提高模型的预测性能,采用鸟群算法优化KELM预测模型的4个参数,以最优参数组合建立预测模型。最后以浙江某风电场采集的实际风速数据为例进行预测验证,结果表明所提出的多步预测方法具有较高的预测精度和运行效率。