摘要

在图像与图形处理中,非欧氏空间数据与传统欧氏空间数据共同构成了数据的不同表达形式。随着面向图像、音频等传统信号的处理技术已经发展了数十年并趋于成熟,诸如图等非欧氏空间数据的兴起,对非欧氏空间的数据处理提取提出了更高的要求。图卷积网络的出现将面向传统信号的深度学习网络模型和卷积操作拓展到了图上,在一定程度上解决了学术界和工业界对图信号处理的需求。然而,空域特征聚合的图卷积网络容易产生过平滑问题。本文回顾了从图卷积网络到图散射网络的发展进程,分别梳理空域图卷积网络和谱域图卷积网络;并以图卷积网络为桥梁引出了图散射网络,比较和总结了图散射网络的前沿的理论和方法。传统的谱域图卷积网络虽然可以通过滤波器设计避免过平滑问题,但由于可训练参数较少、输出特征比较单一,往往存在表达能力不足的问题。图散射网络的提出很好地解决了图卷积网络中存在的问题。一方面,图散射变换将面向传统信号的散射变换操作拓展到图信号处理上,通过多尺度小波分解提取图信号的多分辨率特征,在保证网络稳定性的前提下解决了空域图卷积网络的特征过平滑问题;另一方面,相较于传统的谱域图卷积网络,图散射网络输出能够提取多尺度带通特征,增强模型的表达能力,提高了图分类等任务的结果。最后分析了现有图散射技术和理论的局限性,并提出了未来图散射网络可能的研究方向。