摘要
边缘计算为解决未来车联网中移动流量的爆炸式增长提供了可行范式,然而位置的动态变化以及计算任务的多样性和差异性,使得资源有限的边缘服务器很难在规定时间内完成区域内多车辆任务的并行处理需求。基于此,以最小化时延为目标,提出一种结合深度确定性策略梯度算法的任务驱动卸载策略。首先,通过对差异性任务类型和紧迫程度进行预处理,构建了一种基于最大延迟容忍度的任务优先级动态调整模型;然后,利用道路区域内的车辆拓扑和通信半径,提出了基于网络密度和负载均衡的动态协作簇划分方法,解决了多样性任务的动态协作卸载优化问题。实验结果表明,所提算法在收敛性、卸载时延及卸载命中率等方面具有性能优势。
- 单位