摘要
基于铝型材表面瑕疵类别多样,对实时检测快速精准的需求,提出一种基于改进YOLOv5的瑕疵检测算法。通过在原始骨干网络的基础上增加新检测层并使用K-means++算法改进锚框的生成方式,提升检测尺度,避免忽视低层语义信息。对铝型材瑕疵数据集离线增强,丰富样本容量;在Backbone网络结构中融入新的卷积结构和E-CBAM注意力机制,提高网络的特征提取能力的同时降低冗余计算,提升模型检测性能;采用EIoU Loss作为整个网络结构的损失函数来加快收敛效率,解决难易样本不平衡的问题。实验结果表明,在铝型材瑕疵数据集上将改进后YOLOv5检测模型与原始YOLOv5模型进行比较,平均精度mAP提升2.9百分点,召回率Recall提升3.9百分点,速度FPS达至45.8,将近年来的代表性算法YOLOv3、YOLOv4、SSD、Faster-rcnn与改进后的检测算法在铝型材瑕疵数据集上进行性能比较,通过综合对比检测精度、检测速度等重要参数证明改进后的YOLOv5检测算法更好地兼顾了检测效率和检测精度。所提方法满足了铝型材工厂生产现场瑕疵检测要求。
- 单位