摘要

针对随机梯度下降法可能会收敛到局部最优的问题,文中提出采用分数阶动量的随机梯度下降法,提高卷积神经网络的识别精度和学习收敛速度.结合基于动量的随机梯度下降法和分数阶差分运算,改进参数更新方法,讨论分数阶阶次对网络参数训练效果的影响,给出阶次调整方法.在MNIST、CIFAR-10数据集上的实验表明,文中方法可以提高卷积神经网络的识别精度和学习收敛速度.

全文