摘要
基于新冠肺炎疫情等突发事件对人们日常生活出行的影响,结合X-13ARIMA-SEATS季节调整模型的自动识别最优ARIMA模型和检测突发事件离群值功能,使用脉冲函数和阶梯函数设计基于离群值的突发事件的干预变量,构建铁路客运量的时间序列ARIMAX干预模型,对铁路客运量近年受到的SARS疫情、铁路客票实名制政策和新冠肺炎疫情等突发事件的冲击趋势进行干预比较分析。结果显示,SARS和新冠肺炎疫情对铁路客运量冲击较大,SARS疫情在冲击滞后的第5~6期铁路客运量基本得到恢复,新冠肺炎疫情对铁路客运量冲击一直在持续中,铁路客运实名制政策实施社会性较强,冲击具有波动性和不稳定性特征,持续时间较短;相对季节调整模型的趋势分析优势,干预模型拟合预测精度显著高于季节调整模型,预测显示我国铁路客运量在缓慢持续回暖中。
- 单位