摘要

目的建立NIRS技术快速无损鉴别当归药材及其伪品的方法。方法采集当归及伪品断面的近红外光谱,结合模式识别法分析药材,用主成分分析(Principal component analysis,PCA)进行定性分析;对比梯度提升决策树(Gradient Boosting Decision Tree,GBDT)、支持向量机(Support Vector Machine,SVM)、人工神经网络(Artificial Neural Network,ANN)3种当归真伪判别模型的分类效果;利用RF筛选特征波长优化所建模型。结果 PCA无法有效区别当归及其伪品;与ANN、SVM相比,GBDT具有更高的准确性,训练集与预测集的总体准确率分别为94.39%和90.38%;而后以RF选取出20个特征波长,建立的近红外特征光谱判别模型训练集和预测集的总体准确率也达到了91.59%和86.54%。结论近红外光谱技术结合GBDT鉴别当归药材真伪鉴别是可行的,为当归药材真伪快速无损鉴别提供了一种新方法。