摘要
当控排企业的配额交易以履约为驱动力时,碳市场会出现集中交易现象,并导致碳价格非线性、非平稳。针对这一问题,结合交易频率信息的相关特性,首先,采用迭代累积平方和算法分析碳市场的成交量,进而依碳配额交易频率对交易期进行划分;然后,借助小波变换(Wavelettransform,WT)提取碳价的市场发展趋势;最后,使用双向长短期记忆神经网络(Bi-directional long short-term memory,BiLSTM)对交易趋势进行预测。实验验证结果表明,若进行预测时能够考虑交易频率信息的影响,则能够提高模型预测精度;利用WT提取到的交易趋势信息进行预测,可使预测的效果优于直接对原序列进行预测;与长短期记忆模型相比,BiLSTM模型有更好的预测表现。
- 单位