孪生神经网络在抽油系统故障诊断中的应用

作者:温后珍; 王浩宇*; 栾仪广; 于双锴; 陈德斌
来源:石油机械, 2023, 51(11): 20-60.
DOI:10.16082/j.cnki.issn.1001-4578.2023.11.003

摘要

人工智能诊断技术可在不同的数据和环境下进行自适应,从而大大提高故障诊断效率。由此提出了一种智能故障诊断方法,用于油田抽油系统的故障检测。现有的方法多采用神经网络技术,通过分析油井示功图来实现诊断。然而,实际采集到的油井示功图数据非常有限且类别不平衡,导致深度卷积神经网络容易出现过拟合。为了解决这个问题,提出采用预训练孪生神经网络方法。在一个较大的数据集上训练一个比较模型,用于判断图像之间的相似度。这个模型能够输出不同图片之间的相似度。利用预训练好的模型,在功图识别任务上进行微调,通过提取和融合2张图片的特征向量,输出它们之间的相似度。研究结果表明,预训练孪生网络模型能够很好地解决小样本问题,特别适用于功图识别这类任务。试验结果显示,该方法在小样本量功图识别任务上表现出色,具有高精度的故障诊断能力,满足抽油系统智能故障诊断要求。预训练孪生网络模型在小样本量功图识别任务上表现良好,为油田抽油系统的智能故障诊断提供了有效的解决方案。

全文