摘要

目的星上的舰船检测需要在资源和时间受限条件下实现快速检测,并且对目标的种类和尺寸缺少先验信息的指导,更多时候还需要实现一景图像中不同尺寸舰船的检测,因此,星上舰船检测要求检测方法具有一定的自适应性,从而实现星上多变的检测场景。方法针对这一问题,提出了一种多尺度分形维的检测方法,可以实现一景遥感图像中不同尺寸舰船目标的检测。首先,针对差分盒算法受盒子尺寸约束的限制使分形维数的计算精度受到影响的问题提出了一种改进算法,改进算法增加了拟合直线的点对数目并引入了拟合误差剔除误差点对,提高了分形维特征计算的精确度。结果在提高了分形维计算精度的基础上,新算法利用自然物体在不同尺度上具有的自相似性,通过多尺度分形维的计算并借鉴视觉显著性中c-s算子来排除背景对目标的干扰,突出舰船目标。实验结果表明,新算法能够有效检测出一景图像中不同尺寸的舰船,优于双参数CFAR算法的检测结果。结论本文提出的多尺度分形维的检测算法可以实现对一景图像中不同尺寸舰船目标的检测,在保证一定检测率的同时有效降低了目标检测的虚警率。