摘要

为解决从单目图像中很难恢复出准确、有效深度信息的问题,提出一种多尺度特征融合的单目图像深度估计算法.算法采用端对端训练的卷积神经网络(CNN)结构,引入从图像编码器到解码器的跳层连接来实现在不同尺度上特征的提取和表达,设计了一种多尺度的损失函数来提升卷积神经网络的训练效果.通过在NYU Depth V2室内场景深度数据集和KITTI室外场景深度数据集上的训练、验证和测试,实验结果表明:提出的多尺度特征融合方法得到的深度图边缘清晰、层次分明,且在室内场景和室外场景中均能适用,具有较强的泛化性,可以适应多种实际场景的需求.