摘要
针对PM2.5浓度的非线性和不确定性,提出了一种基于集成树-梯度提升决策树(Ensemble Trees-GBDT)的PM2.5预测模型.该模型首先在集成树框架下进行特征选择,即选取PM2.5浓度主要影响因素,使用算术均值聚合法计算出各项特征对PM2.5浓度增加的影响程度,并以影响程度由强到弱的次序排序;其次使用网格搜索对GBDT算法进行参数优化,选取树的深度等参数的最优值;最后构建完整的PM2.5浓度集成预测模型.使用北京市2015—2016年的污染物浓度和气象条件观测值2个数据集,对模型进行了预测仿真实验.对比实验结果表明,所提出的Ensemble Trees-GBDT预测模型相比于决策树、随机森林、支持向量机等模型,具有更低的平均绝对误差和均方根误差,同时具有更好的泛化能力,能够更准确地预测PM2.5浓度,并实现对PM2.5浓度影响因素的有效分析.
- 单位