摘要
针对判别最小二乘回归(DLSR)对图像噪声鲁棒性不佳的问题,提出一种基于潜子空间去噪的子空间学习图像分类方法(DLSSL)。该方法在架构上不同于现有基于回归的分类方法,其在视觉空间与标签空间中引入一个潜在子空间,将传统的图像分类框架改进为两步,即先降噪后分类。该方法先通过欠完备自编码将数据的高阶特征提取到潜在空间,再利用此高阶特征进行回归分类,同时辅以组核范数约束控制类内样本间距离。潜在子空间的引入为算法框架带来了更多灵活性,缓解了视觉空间与标签空间中数据维度与特性的差异,使得欠完备自编码可以有效地对数据进行降噪,提升了分类算法的鲁棒性。在人脸、生物指纹、物体和深度特征数据集上设计了多组对比实验,实验结果表明,算法对于图像中的噪声具有较强的鲁棒性,获得的投影矩阵具有良好的判别性,相比现有图像分类算法,性能更好、普适性更强,能有效地运用于各种图像分类任务。
-
单位南京审计大学