摘要
采用支撑向量机(Support Vector Machine,SVM)模型进行GPS高程拟合时,拟合精度受模型参数(核参数和惩罚因子)选择影响较大,传统交叉验证法存在计算复杂,易陷入局部最优的问题。本文将粒子群(Particle Swarm Optimization,PSO)算法引入SVM模型,利用PSO全局搜索能力强和收敛速度快的特点对SVM模型进行优化,提升GPS高程拟合精度的同时增强模型的泛化适应性。最后基于实际算例对所提方法的拟合性能进行验证,结果表明相对于传统交叉验证SVM模型,所提PSO-SVM模型能够获得更高的拟合精度,并且对复杂地势具有更强的适应能力。