摘要
针对评论文本的个性化推荐算法包括多个功能层。数据预处理层将用户对物品的评语转化为词向量,从而降低算法的计算效率。卷积神经网络层对预处理后的数据进行卷积操作,形成评论语句的上下文表达方法。注意力层分为三层注意力机制和协同注意力机制两种运行模式,用于提取用户和物品的个性化特征。预测评论层以量化方式对个性化推荐算法进行评价,相关评价指标为均方误差。经数据检验,该推荐算法的性能优于PMF、UserCF等同类推荐算法。
-
单位武汉工程职业技术学院