摘要

为了解决模型更新混合试验中BP神经网络算法泛化能力较差的问题,引入了一种新方法——AdaBoost回归树算法作为混合试验中的模型更新算法.在学习阶段,选择回归树作为弱回归模型进行训练,然后将多个弱回归模型集成为一个强回归模型,最后对训练结果进行表决输出.利用在线AdaBoost回归树算法和BP神经网络算法作为模型更新算法,对一个二自由度非线性结构进行了数值模拟.结果表明,在线AdaBoost回归树算法的预测精度比神经网络高48.3%,证实了AdaBoost回归树算法比BP神经网络算法具有更好的泛化能力,并且有效消除了权重初始化的影响,提高了混合试验中恢复力的预测精度.