摘要
深度学习在检测领域高速发展,但受限于训练数据和计算效率,在基于嵌入式平台的边缘计算领域,尤其是实时跟踪应用中深度学习的智能化算法应用并不广泛。针对这一现象,同时为满足现阶段国产化、智能化的技术需求,提出了一种改进的孪生网络深度学习跟踪算法。在特征网络加入微调网络,解决了网络模型无法在线更新的问题,提升了跟踪的准确性;在IoUNet损失函数中加入中心距离惩罚项,解决了IoUNet当IoU相同时位置跳跃,存在收敛盲区和收敛速度慢的问题;将训练后的网络通过通道剪枝,缩减网络模型尺寸,提升了模型加载和运行的速度。在华为Atlas200NPU平台上实现了实时运行,算法准确率高达0.90(IoU>0.7),帧率达到66 Hz。
- 单位