摘要
种群多样性和信息交互的深度与方式对混合蛙跳算法的爬山能力、探索能力和开发能力有着深远影响.针对混合蛙跳算法易于陷入局部最优、收敛速度慢和寻优精度差等缺点,提出一种基于解空间反向跳跃和信息交互强化的新型混合蛙跳算法.首先,增加子群次优解与次劣解的信息交互,促进子群内部信息的利用,引入反向跳跃思想改进局部更新机制,降低迭代后期劣解产生概率,提升空间开发能力;然后,借鉴2-opt方法实现局部最优解变异,增加子群的多样性;最后,采用各局部最优解交叉的方式加深子群间的交互深度,同时利用反向跳跃机制防止种群同化.采用23个单峰、多峰和固定维度下的复杂多峰函数作为测试集进行仿真实验,结果表明所提出算法具有更优的搜索性能,能够有效提高种群多样性,防止算法早熟收敛,且能够适应不同类型的函数优化问题.
-
单位自动化学院; 南京信息工程大学