摘要
提出了一种融合改进遗传算法(Genetic algorithm,GA)和关联规则的数据挖掘方法,首先将GA交叉算子和变异算子进行自适应改进,使其在迭代过程中能够根据函数适应度值自适应调节;然后将改进后的自适应GA融入到关联规则中,充分利用GA良好的全局搜索能力,提高处理海量数据关联规则的挖掘效率。为了避免无用规则,减少不相关性的存在,在此基础上融入亲密度以提高关联规则的可靠性。在Hadoop大数据平台上通过分析交通数据验证优化后的算法,与传统方法相比,该方法提高了算法的收敛速度和鲁棒性。
- 单位